QUANTITATIVE METHODS

COURSE OUTLINE

(Revised: February, 2014)
Table of Contents

1. Introduction
 1.1 Objectives
 1.2 Prerequisites
 1.3 Organization and mode of assessment

2. Part I Mathematics for Economists
 2.1 Overview
 2.2 Course prerequisites
 2.3 Textbooks
 2.4 Organization and mode of assessment
 2.5 Course content
 I. Matrix Algebra 12 hours
 II. Economic application of calculus and static optimization 21 hours
 III. Dynamic Analysis and Optimization 22 hours
 IV. Introduction to set theory and real analysis 5 hours

3. Part II Econometrics
 3.1 Overview
 3.2 Textbooks
 3.3 Software
 3.4 Course content
 I. Review of probability and statistics 8 hours
 II. Classical linear regression 12 hours
 III. Simultaneous equation models 8 hours
 IV. Time series analysis 16 hours
 V. Limited dependent variable models 8 hours
 VI. Panel data analysis 8 hours
1. INTRODUCTION

1.1 Objectives
This course aims to provide a sound training in mathematics and econometrics which masters student in economics would be expected to cover. The structure of the course takes into account past experience in offering the course within the collaborating universities as well as recent developments. The structure also conforms to the prevailing trends in reputable Universities across the globe.

The curriculum is designed to improve the quantitative skills of master’s students in economics. More specifically, the objectives of this course are to equip students to be able to:

- read and understand arguments in textbooks and journal articles using mathematical techniques commonly used in modern economic analysis;
- grasp the relevance and use of modern mathematical techniques in their applications in theoretical and applied economics;
- apply standard quantitative techniques to the analysis of economic phenomena and to conduct empirical research;
- develop models in theoretical or applied work; and
- understand the theoretical foundations of quantitative techniques.

1.2 Prerequisites
Knowledge and understanding of basic mathematics and statistics at the undergraduate level

1.3 Organization and mode of assessment
The course is divided into two parts each running for one semester with 60 contact hours per semester. The assessment of the course will be through course work, project and final examination.
2. **PART I: MATHEMATICS**

2.1 **Overview**

This part of the course puts emphasis on the teaching of mathematical techniques and programming required for a standard master’s level economic analysis, but not on mathematical economics as a specialized branch of economics. This should not bar a department or the collaborative programme as a whole from offering an elective course in advanced mathematical economics should it be desired.

2.2 **Textbooks**

The course curriculum is designed around the following textbooks:

These particular textbooks were chosen because they treat mathematical techniques at progressively higher levels of difficulty, each time indicating whether the material is pitched at the BA, MA, or Ph.D level. The texts are particularly suited to achieve two purposes: (1) to teach mathematics for economists at the appropriate level, and (2) to allow students to revise through self-study the prerequisites of the different components of the course.

2.3 **Course Content**

The course comprises of the following four parts: Matrix algebra, economic applications of calculus and static optimization, dynamic analysis and optimization, and introduction to set theory and real analysis.
I MATRIX ALGEBRA 12 hours

This section features elements of revision of components of bachelor’s level training in matrix algebra. The emphasis in this part is on the solution of simultaneous equations.

Prerequisites: self-study individual readings: Klein, Chapter 4: 4.2 and 4.3

1.1. Matrix algebra and system of linear equations 4 hours
Reading: Klein, Chapter 4
CW, Chapters 4 and 5
SH, Chapters 15 and 16

1.2. Solving system of linear equations with economic applications, including the input-output model 4 hours
Reading: Klein, Chapter 5
CW, Chapters 4 and 5
SH, Chapters 15 and 16

1.3. Eigenvalues and eigenvectors 2 hours
Reading: CW, Chapters 4 and 5
SHSS, Chapter 1

1.4. Quadratic forms 2 hours
Reading: CW, Chapters 4 and 5
SHSS, Chapter 1

II ECONOMIC APPLICATIONS OF CALCULUS AND STATIC OPTIMIZATION 21 hours

This section revises differential and integral calculus with specific emphasis on their applications to economic analysis. Although students are assumed to be familiar with univariate calculus, some applications will be reviewed. The main emphasis is on multivariate calculus, extreme values of multivariate functions and constrained optimization.

Prerequisites: Self-study individual readings: Klein, Chapters 6 and 7
2.1 Univariate differential calculus

3 hours

2.2 Applications of univariate optimization

2 hours

Readings:
- Klein, Chapters 7 and 9
- CW, Chapters 6, 7, 9 and 10
- SH, Chapters 6-8

2.3 Applications of multivariate differential calculus

5 hours

2.4 Applications of extreme values of multivariate functions

5 hours

Readings:
- Klein, Chapter 8
- CW, Chapters 8 and 10
- SH, Chapters 11-13
- Klein, Chapter 10

2.5 Applications of unconstrained optimization

2 hours

Readings:
- Klein, Chapter 11
- SH, Chapters 14 and 17
- CW, Chapters 12 and 13

2.6 Applications of integral calculus

4 hours

Readings:
- CW, Chapter 14
- SH, Chapter 9

III DYNAMIC ANALYSIS AND OPTIMIZATION

22 hours

This section introduces material on dynamic optimization which in part will be new to most students. It concerns difference and differential equations and dynamic optimization. Particular attention should be given to the economic applications of the techniques rather than their mechanics.

Prerequisites: Self-study individual readings: Klein, Chapter 12

3.1 Dynamic analysis

3.1.1 Applications of difference equations

6 hours

Readings:
- Klein, Chapter 13
- CW, Chapters 17 and 18

3.1.2 Applications of differential equations

6 hours
Readings: Klein, Chapter 14
CW, Chapters 15 and 16

3.2 Applications of dynamic optimization

10 hours

3.2.1 Dynamic optimization in discrete time
3.2.2 Optimal control theory
3.2.3 Calculus of variations

Readings: Klein, Chapter 15
CW, Chapter 20

IV INTRODUCTION TO SET THEORY AND REAL ANALYSIS 5 hours

4.1 Set theory

Readings:
Simon and Blume, Chapter 12

4.2 Real analysis

Readings:
Simon and Blume, Chapters 15, 20 and 21

3. PART II ECONOMETRICS

3.1 Overview
This part of the course aims to provide a sound training in the theory and practice of modern econometrics. To this end, matrix algebra is introduced progressively, after students have become acquainted with the non-matrix formulations. A rigorous and fully-fledged matrix algebra treatment of econometrics is provided in a subsequent elective course on econometric theory and practice.

3.2 Textbooks

Supplementary text books

Additional econometrics resources are available at http://econometricslinks.com and http://www.economicsnetwork.ac.uk/

3.3 **Software**

Since the course requires computer-assisted laboratory sessions, it is recommended that students be trained in econometric software packages that are appropriate, not only for econometric applications, but also for modern data analysis (e.g., using graphical methods).
Mathematics for economists software: Mathematica, Maxima (open source available at http://maxima.sourceforge.net/)

Econometrics software: STATA and Eviews are highly recommended statistical packages which are excellent for modern data analysis as well as for standard econometric applications (including time series analysis). Open source alternatives are GRETl (http://gretl.sourceforge.net/), R (http://www.r-project.org/) and OCTAVE (https://www.gnu.org/software/octave/). Other recommended commercial statistical packages include RATS, LIMDEP, MICROFIT, MATLAB, GAUSS and SHAZAM. Note that, at the start of the course, students need to be given an introduction to the appropriate software package.

3.4 Course content

1 REVIEW OF PROBABILITY AND STATISTICS 8 hours
This part assumes that students are already familiar with basic statistical inference in the univariate case. These techniques are simple in construction, powerful for empirical analysis, but are largely unknown to students with a more traditional training in statistics for economists. This part requires a combination of lectures and computer-assisted hands on experience with real data.

Prerequisites: self-study individual readings: Wooldridge (2013), Appendices B and C

1.1. Fundamentals of Probability 2 hours
Readings: Wooldridge (2013), Appendix B
Verbeek, Appendix B
HGL, Appendix B

1.2. Estimation (least squares, method of moments and maximum likelihood) 4 hours
Readings: Wooldridge (2013), Appendix B

1.3. Hypothesis testing 2 hours
Readings: HGL, Appendix C
II CLASSICAL LINEAR REGRESSION

12 hours

This part largely contains revision of material that students should already be familiar with, although some of the later topics may not have been covered in some undergraduate programmes. The emphasis of this section should be on stochastic explanatory variables and the problem of non-spherical disturbances. Computer-assisted laboratory sessions with real data are encouraged.

Prerequisites: self-study individual readings: HGL, Chapters 1 - 4

2.1 The classical (multiple) regression model
Readings: Wooldridge (2013), Chapters 3-6
HGL, Chapter 5
Verbeek, Chapter 2

2.2 Restricted least squares

2.3 Relaxing classical assumptions (including stochastic explanatory variables),
Readings: Wooldridge (2013), Chapters 8 and 12
HGL, Chapter 8 and 9
Verbeek, Chapters 3 and 4

2.4 Model selection
Readings: HGL, Chapters 6 and 7
Gujarati and Porter, Chapter 13
Verbeek, Chapter 3

III SIMULTANEOUS EQUATION MODELS

8 hours

This part introduces simultaneous equation models (SEMs). The aim is to provide examples of SEMs and show why the method of ordinary least squares (OLS) is generally inapplicable owing to endogeneity and simultaneity bias.
3.1 Specification, identification and simultaneity bias
Readings: HGL, Chapter 11
Verbeek, Chapter 5

3.2 Estimation techniques (ILS, 2SLS, etc.)
Readings: HGL, Chapters 9 and 14
Verbeek, Chapter 5
Gujarati and Porter, Chapters 18-20

IV TIME SERIES ANALYSIS
16 hours

This part aims to familiarize students with the basic concepts in time series analysis and the empirical analysis of time series data. It should include at least one computer-assisted hands on experience laboratory session investigating deterministic and stochastic trends in time series and estimating a dynamic model.

4.1 Specification and estimation of univariate time series models
Readings: JD, Chapter 7
Verbeek, Chapter 8
Enders, Chapter 2

4.2 Estimation of ARDL and related models
Readings: HGL, Chapter 9
Gujarati and Porter, Chapter 17

4.3 Trends, unit roots and spurious regressions
Readings: HGL, Chapter 12
Verbeek, Chapter 8
Gujarati and Porter, Chapter 21
Enders, Chapters 2 and 4
Harris and Sollis, Chapter 3

4.4 Cointegration and error-correction models
Readings: HGL, Chapter 12
Verbeek, Chapter 9
Enders, Chapter 6
Harris and Sollis, Chapter 4

4.5 VAR models
2 hours
Readings:
HGL, Chapter 13
Gujarati and Porter, Chapter 22
Enders, Chapter 5
Verbeek, Chapter 10
Harris and Sollis, Chapters 5 and 6

4.6 Introduction to ARCH and GARCH models
2 hours
Readings:
HGL, Chapter 14
Enders, Chapter 5
Verbeek, Chapter 8
Harris and Sollis, Chapter 8

4.7 Forecasting
2 hours
Readings:
HGL, Chapters 9 and 14
Gujarati and Porter, Chapter 22
Enders, Chapter 2
Harris and Sollis, Chapter 8

V LIMITED DEPENDENT VARIABLE MODELS
8 hours
This part deals with qualitative and limited dependent variables. It should be supported by one or more computer-assisted laboratory sessions using a cross-section data featuring various categorical variables.

5.1 Linear probability models, logit and probit
4 hours
Readings:
HGL, Chapter 16
Gujarati and Porter, Chapter 15
Madalla and Lahiri, Chapter 8
Wooldridge (2013), Chapter 7
5.2 Tobit and sample selection

Readings: HGL, Chapter 16
Gujarati and Porter, Chapter 15
Madalla and Lahiri, Chapter 8
Wooldridge (2013), Chapter 17
Verbeek, Chapter 10

VI PANEL DATA ANALYSIS

This part introduces models that combine time series and cross-sectional observations, and the methods by which they can be estimated.

6.1 Pooled, fixed effects and random effects regressions

Readings: HGL, Chapter 15
Gujarati and Porter, Chapter 16
Verbeek, Chapter 10
Wooldridge (2013), Chapters 13-14

6.3 Specification tests

Readings: HGL, Chapter 15
Gujarati and Porter, Chapter 16
Verbeek, Chapter 10
Wooldridge (2013), Chapters 13-14