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A B S T R A C T   

As one of the highest energy-consuming sectors, Kenya’s manufacturing sector share of electricity consumption 
in 2019 was 50.16%. That of fuel consumption was 12%, the second-highest after the transport sector. It is 
therefore important to analyze the sector’s energy efficiency and its determinants. A stochastic frontier analysis 
based on the assumption of a translog production function at the sub-sector level is estimated by employing a 
pooled model covering the years 2007, 2013 and 2018 in the analysis of electricity efficiency and 2007 and 2013 
in the analysis of fuel and total energy efficiency. The sub-sectors of interest are: chemicals, pharmaceuticals and 
plastics, food, textile and garments and the other manufacturing sub-sector. The results show significant potential 
to enhance electricity, fuel and total energy efficiency across all the sub-sectors. The findings further reveal that 
exporting status, research and development, top managers’ experience and female ownership enhance energy 
efficiency. The effect of these variables is, however heterogeneous by sub-sector and energy form. Labor pro-
ductivity negatively influences electricity, fuel and total energy efficiency while the effect of firm age and size is 
ambiguous. Finally, the study provides policy implications for the design of policies to improve energy efficiency.   

1. Introduction 

Energy consumption, particularly fossil fuel, has sparked a string of 
global resource and environmental problems, including climate change, 
a threat to exhaustion of energy resources, and environmental pollution. 
Moreover, energy consumption poses a threat to firms’ competitiveness, 
especially during periods of high energy prices. Kenya’s input to CO2 
emissions on a global level is small. However, the county’s fast 
increasing population and expanding economic activity can result in a 
substantial upsurge in its future emissions (Dalla Longa and van der 
Zwaan, 2017). In recent years, there’s been an increase in energy con-
sumption. For instance, between 2010 and 2019, fuel consumption rose 
by 40.43%, while electricity consumption rose by 27.80% (Republic of 
Kenya, 2014, 2020a). 

One of the biggest energy consumers in Kenya is the manufacturing 
sector. The sector is a key engine of growth as it harbors high produc-
tivity economic activities. In devising her development plan, Kenya has 
envisioned a specifically central role for this sector. For instance, in the 
2018–2022 five-year “Big Four” Agenda, Kenya targets to raise the 
sector’s contribution to GDP from 8.4 to 15% in a bid to accelerate job 
creation and cut the existing trade deficit (Republic of Kenya, 2020a). 

The sector leads in electricity consumption and it’s the second- 

biggest consumer of fuel after the transport sector. For instance, the 
share of electricity consumption in 2019 was 50.16%. Fuel consumption 
was at 12%, the second-highest after the transport sector, whose share 
was 86.18% (Republic of Kenya, 2020a). Given the significance of the 
manufacturing sector both in its impact on the economy’s performance 
and in energy consumption, the need for energy efficiency has gained 
prominence. The International Energy Agency (IEA) provides that en-
ergy efficiency is the best cost-effective measure to handle energy use 
concerns (IEA, 2014). Energy efficiency entails the use of fewer amounts 
of energy in production without reducing output (Lundgren et al., 
2016). 

The Kenyan government has taken a leading role in promoting en-
ergy efficiency in the manufacturing sector. In partnership with the 
Kenya Association of Manufacturers (KAM), the Ministry of Energy and 
Petroleum Development established a Centre for Energy Efficiency and 
Conservation (CEEC) in 2006. The center aims at cutting costs and 
promoting the competitiveness of firms whilst fostering a clean envi-
ronment. It develops energy efficiency and conservation programs 
tailored to help firms identify energy wastage and provides recom-
mendations to be implemented. Such programs include energy audits 
intended to give recommendations that can help firms save an average of 
20% of their total energy expenditure and specialized training on proper 
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energy management (Republic of Kenya, 2020b). 
The government recently established the Kenya National Energy 

Efficiency and Conservation Strategy (NEECS) to coordinate energy ef-
ficiency measures in more sectors. NEECS provides a roadmap towards 
setting and realizing energy efficiency targets across various sectors 
(Republic of Kenya, 2020b). Under NEECS, CEEC is aiming at increasing 
energy audits in the manufacturing sector from 1800 to 4000 during 
2019–2025. The sector is also expected to undertake recommended 
energy conservation measures to save 100 MW (MW) of electricity, 250 
million liters of heavy fuel oil, and 9 million liters of industrial diesel oil 
from a baseline of 20 MW of electricity, 51 million liters of heavy fuel oil 
and 1.8 million liters of industrial diesel oil in the same period (Republic 
of Kenya, 2020b). In addition, NEECS sets to undertake resource 
mobilization in concerned government agencies to finance energy effi-
ciency programs. 

Despite efforts to intensify energy efficiency, energy consumption in 
Kenya’s manufacturing sector has continued to expand over the years. 
For instance, between 2010 and 2019, the sector’s fuel consumption 
rose from 414.6 to 635.5 thousand tonnes. Consumption of electricity 
rose from 3204.9 to 4441.0 GWh (Republic of Kenya, 2013, 2020a). 
Despite the increase in energy use, the performance of the sector 
remained unsatisfactory. For example, through the same period, the 
sector’s growth rate was unstable and recorded a drop from 4.5 to 3.2%. 
The sector’s contribution to GDP contracted from 10.7 to 7.5% (Re-
public of Kenya, 2013, 2018b). 

The increase in energy use not backed by improved economic per-
formance points to energy inefficiency. A rigorous examination of en-
ergy efficiency is crucial to explore the actual level of energy 
inefficiencies and institute feasible measures to alleviate the in-
efficiencies. While studies such as Lin and Long (2015), Lundgren et al. 
(2016), Haider et al. (2019) and Boyd and Lee (2019) have analyzed 
energy efficiency in the manufacturing sector in different countries, 
there is scant evidence in Kenya’s manufacturing sector. The few related 
studies focus on methods of implementing energy efficiency or 
concentrate on economy-wide energy efficiency. For instance, Ndichu 
et al. (2015) explore ways of implementing energy efficiency in maize 
milling firms while Zhang et al. (2011) analyze the economy-wide total 
factor energy efficiency. 

This study seeks to address the research gap by providing evidence 
from Kenya’s manufacturing sector. The study is based on a production 
function framework using Stochastic Frontier Analysis (SFA). Unlike 
previous studies, this study provides separate evidence for electricity 
efficiency and fuel efficiency. Boyd and Lee (2019) observe that firm 
processes have varying demands for various energy forms and thus it is 
important to analyze electricity and fuel efficiency separately. The study 
also assesses total energy efficiency for robustness check. The analysis is 
performed at the sub-sector level. The sub-sectors of interest are: 
chemicals, pharmaceuticals and plastics, food, textile and garments and 
the other manufacturing sub-sectors. 

The rest of the article is organized as follows: Section 2 provides the 
literature review. Section 3 illustrates the empirical model and data. 
Section 4 provides empirical results. Section 5 offers the conclusion and 
policy implications. 

2. Literature review 

There exist two broad measures of energy efficiency: single factor 
and total factor energy efficiency measures. Under the single factor, 
energy efficiency is conventionally indicated by energy intensity, 
defined as a ratio of energy input to output. Studies that have adopted 
this approach include Sahu and Narayanan (2011) who analyze total 
factor productivity and energy intensity in India’s manufacturing sector 
and Montalbano and Nenci (2019) who perform a firm-level analysis of 
energy efficiency, productivity and exporting in Latin America’s 
manufacturing sector. Even though energy intensity is easy to calculate 
and understand, it is not a satisfactory indicator as it takes into account a 

single input that produces output thereby failing to recognize the 
contribution of other inputs. (Lundgren et al., 2016). 

Total-factor energy efficiency recognizes that modern production is 
multi-input-based (Lin and Long, 2015). Under this measurement are 
non-parametric (DEA) and parametric (SFA) approaches. The DEA re-
quires no prior description of a production function. It determines the 
efficiency of decision-making units (DMUs) using linear programming 
where a piecewise best linear frontier is constructed from observed data. 
Deviations from the best linear frontier are termed as measures of in-
efficiency. DMUs sitting on the best linear frontier are said to be effi-
cient. Studies using DEA are less susceptible to functional form 
misspecification errors, given that DEA does not demand prior specifi-
cation of the functional form. 

Examples of DEA applications are Mukherjee (2008a), who estimates 
energy efficiency in U. S’s manufacturing sector during 1970–2001 and 
Mandal and Madheswaran (2011), who use firm-level information for 
the period 1989-90 to 2006-07 to explore energy efficiency in India’s 
cement firms. Al-Refaie et al. (2016) estimate energy efficiency and 
productivity growth in the Jordanian industrial sector during 
1999–2013. In Korea, Moon and Min (2017)assess pure energy effi-
ciency and economic efficiency in energy-intensive firms using panel 
data for 63 firms during 2012–2014. Li and Shi (2014) apply DEA to 
analyze energy efficiency in China’s industrial sector using panel data 
during 2001–2010. Haider et al. (2019) use a panel of 67 firms to 
analyze energy efficiency in India’s paper industry during 2003–2014. 
Nevertheless, studies using DEA are likely to overestimate or underes-
timate energy efficiency because DEA assumes all deviations from the 
best linear frontier are purely outcomes of inefficiency (Chirwa, 2001). 

SFA overcomes the problem by accounting for random variations in 
addition to inefficiency. Studies using SFA include Lundgren et al. 
(2016) who analyzed energy efficiency in 14 sectors of the Swedish 
manufacturing sector by employing an unbalanced panel of 4297 firms 
during 2000–2008. Lin and Long (2015) examine energy efficiency in 
China’s chemical industry by exploiting a panel of 30 provinces during 
2005–2011. Boyd and Lee (2019) measure firm-level energy efficiency 
and technical change in U. S’s metal-based durable manufacturing 
sector by applying panel data during 1987–2012. Others are Filippini 
and Hunt (2011), who assess energy demand and energy efficiency in 29 
OECD countries during 1978–2006 and Filippini and Zhang (2016), who 
analyze energy efficiency in 29 Chinese provinces with panel data 
during 2003–2012. 

Researchers seem to reach a consensus that capacity exists to 
improve energy efficiency in the manufacturing sector that varies among 
firms and regions. For variations among firms, Boyd and Lee (2019) find 
new entrant firms to be more efficient than existing firms in U. S’s 
metal-based durable manufacturing sector. Mukherjee (2008a) finds the 
largest energy-consuming sub-sectors in U. S’s manufacturing sector to 
be relatively energy efficient. In Swedish manufacturing, Lundgren et al. 
(2016) establish that the food sub-sector is least fuel-efficient while the 
fabricated metal sub-sector is the most fuel-efficient. Further, the study 
finds that the rubber/plastics sub-sector is the most electricity efficient 
and the stone/mineral sub-sector is the least electricity efficient. 

In terms of regional variation, Mukherjee (2008b) finds that Goa, 
Haryana and Maharashtra states perform best in energy efficiency in 
India’s manufacturing sector while Andhra Pradesh Madhya Pradesh, 
Orissa and Rajasthan perform least. Lin and Long (2015) establish that 
energy efficiency is the largest in the Eastern region in China’s chemical 
industry and lowest in the Western region. Lin and Wang (2014) 
establish that in China’s iron and steel industry, firms in Northern China 
have relatively high energy efficiency while those in Central and 
Western China perform poorly. 

To explain the variations in findings, various studies have assessed 
determinants of energy efficiency. The first is ownership structure where 
firms are categorized as either local or foreign-owned. Sahu and Nar-
ayanan (2011) find that foreign ownership positively influences energy 
efficiency. The second is firm size. Lundgren et al. (2016) study Swedish 
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manufacturing firms and Moon and Min (2017) Korean heavy 
energy-consuming firms and find energy efficiency to increase with firm 
size. Mandal and Madheswaran (2011) study India’s cement industry 
and Li and Shi (2014) China’s industrial sector and find energy effi-
ciency and firm size to have a non-linear (U-shaped) relationship. 

The third determinant is firm age. Boyd and Lee (2019) examine U. 
S’s metal-based industry and Haider et al. (2019) India’s paper industry 
and find young firms to be more energy-efficient than older firms. 
Mandal and Madheswaran (2011) find age to have no significant effect 
on energy efficiency in India’s cement industry. The fourth is exporting 
status where Roy and Yasar (2015) and Campi et al. (2015) find 
exporting firms to be more energy efficient. 

The fifth is Research and Development (R&D). Lin et al. (2011) study 
China’s steel industry and Lutz et al. (2017) Germany’s manufacturing 
firms and find R&D to positively influence energy efficiency. In contrast, 
Sahu and Narayanan (2011) find R&D investments to negatively influ-
ence energy efficiency. Li and Shi (2014) examine China’s industrial 
sectors and Haider et al. (2019) India’s paper industry and find R&D 
investments to have no significant effect on energy efficiency. The last 
determinant is labor productivity. Lin et al. (2011) analyze China’s steel 
industry and Mandal and Madheswaran (2011) India’s cement industry 
and find labor productivity to promote energy efficiency. However, Sahu 
and Narayanan (2011) find labor productivity to have no significant 
effect on energy efficiency in India’s manufacturing. 

Evidence on energy efficiency in the manufacturing sector in 
developing countries, particularly Kenya, is scarce. The few existing 
studies explore energy efficiency in the whole economy or analyze the 
implementation of energy efficiency measures. For instance, Zhang et al. 
(2011) analyze the total factor energy efficiency of the entire economy 
while Ndichu et al. (2015) assess the uptake of energy efficiency mea-
sures by maize milling firms in Kenya. This study sets to analyze energy 
efficiency and its determinants in Kenya’s manufacturing sector. Part of 
the novelty of this study is to include top manager’s experience and 
female firm ownership in assessing determinants of energy efficiency. 
Given that SFA accounts for both random shocks and inefficiencies, it is 
preferred in this study over DEA. 

3. Empirical model 

The pioneering works in production efficiency are by Debreu (1951) 
and Farrel (1957). Debreu (1951) proposed measurement of technical 
efficiency based on output orientation, while Farrel (1957) based mea-
surement on input orientation. According to Kumbharkar (2000), the 
two measurements are jointly referred to as Debreu-Farrel efficiency and 
they form the basis for analysis in this study. 

Consider a firm using Z inputs. The input vector X≡ x1, …, xz pro-
duces output vector Q. Taking the firm’s objective to be energy con-
servation and following Lin and Long (2015), the study adopts the 
stochastic input distance function form of the input-oriented model first 
proposed by Shepherd (1970). The function is expressed as: 

D(Q, X)=max{γ : X / γ| γ ∈ Wt(Q)}, Wt(Q)=
{

ε RZ
+:  X  can  produce  Q

}

(3.01)  

where γ is a positive scaler “distance” by which the input vector can be 

deflated and Wt(Q) is the technology set which provides a set of all input 
vectors, Xε RZ

+, with the potential to produce output vector Q ε RH
+. 

Equation (3.01), infers that at time t, for a specified amount of output 
vector Q and the present technology, the input vector X is decreased by 
the biggest fraction and for any viable output, D(Q, X) ≥ 1. If D(Q, X) =

1, point (X, Q) sits on the production frontier, indicating full efficiency. 
If D(Q, X) > 1, point (X, Q) sits outside the frontier, implying that 
potentially, there is technical inefficiency in production (Lin and Long, 
2015). The input distance function is assumed to be linearly homoge-
neous and non-decreasing in inputs, decreasing in output, concave in the 
input vector, and quasi concave in the output vector (Coelli, 2000). 

Following Boyd (2008), it is feasible to develop a sub-vector input 
distance function from equation (3.01) by letting some inputs remain 
fixed while scaling a subset of others. Given that this study seeks to 
establish the maximum possible proportionate cut in energy use, energy 
is scaled as: 

DI(Xz− 1,R, Q)=max
{

γ
(

Xz− 1,
R
γ
, Q

)

∈W, W=

{

(X,Q):  (X)produces  Q
}

(3.02)  

where Xz− 1 is a Z-1 vector of fixed inputs and R is energy. 
Empirical estimation of equation (3.02) requires a prior assumption 

of a functional form. This study assumes a translog production function 
because, unlike the Cobb-Douglas production function, it is flexible, 
allows for interaction among variables and does not violate the con-
vexity condition (Lin and Long, 2015). Further, unlike other functions, it 
satisfies the assumption of linear homogeneity in inputs. The linear 
homogeneity condition is first imposed by normalizing the data. This is 
done by dividing the distance measure and the Z-1 inputs by the Z-th 
input variable (Kumbhakar et al., 2015). Given that energy is the vari-
able of interest, it is taken to be the numeraire variable; 

DIiX− 1
zi = g(x i, Qi) where x =

(

X1/Xz
,…,Xz− 1/Xz

)

(3.03) 

Taking logs on both sides yields: 

ln DIi − ln Xzi = ln g(x i, Qi) (3.04) 

The translog input distance function for equation (3.04) is written as:  

where kit = Kit/Rit is capital, lit = Lit/Rit is labor, mit = Mit/Rit is mate-
rials, Rit is energy, Qitis output, i is firm and t is time. α0, αz, αT ,αzj, αzT 

are parameters to be estimated. T is a time trend included to capture 
technical change. 

For lnDIit ≥ 0, the following symmetric conditions need to be satis-
fied by equation (3.05). 
∑

z
αzj =

∑

z
αzy =

∑

z
αzT = 0, αzj = αjz, z ∕= j (3.06)  

lnDit in equation (3.05) is unobservable, implying estimation of the 
model is not feasible. Thus the equation is rearranged to obtain: 

− ln Rit = g(kit, lit,mit, Qit,T) − ln Dit (3.07)  

lnDit is an inefficiency term. Letting lnDit = vit, vit > 0 and introducing 

lnDIit − ln Rit =α0 +αqln Qit +αkln kit + αlln lit + αmln mit +αT Tit +
1
2

αqq(ln Qit)
2
+

1
2

αkk(ln kit)
2

+
1
2

αll(ln lit)
2
+

1
2

αmm(ln mit)
2αkl ln kitlnlit +αkm ln kitlnmit +αkq ln kitlnQit +αlm ln litlnmit +αlq ln llnQit

+αmq ln mitLnQit +
1
2

αTT (ln Tit)
2
+αkT ln kitlnTit + αmT ln mitlnTit + αlT ln litlnTit + αq ln QitLnTit

(3.05)   
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the error term μit gives: 

− ln Rit = g(kit, lit,mit, Qit, T) + μit − vit (3.08)  

where μit is a symmetric disturbance component, which is independent 
and identically distributed with N(0, σ2

μit
) and (- vit) is the technical in-

efficiency component, which is an identically distributed truncated 
random variable with N+(vit, σ2

vit
), vit > 0. Equation (3.08) provides a 

stochastic frontier model for energy input. Transforming the equation by 
taking antilog yields: 

Rit = g(kit, lit,mit, Qit, T)exp( − vit + μit) (3.09)  

where Rit indicates the actual energy input, g(kit, lit,mit , Qit,T) denotes 
the derived energy demand function and exp(-vit+ μit) is a composite 
error component. 

Based on the Debreu-Farrell efficiency framework, the derived en-
ergy demand function is taken to be the benchmark frontier. Variation of 
actual energy input from the energy input benchmark is the excess en-
ergy consumption resulting from technical inefficiency. Splitting the 
inefficient term from the composite error (-vit+ μit) gives the energy 
input efficiency level: 

EFit =
E(Rit|vit ∕= 0, kit, lit,mit, Qit,T)
E(Rit|vit = 0, kit, lit,mit, Qit,T)

= exp( − vit) (3.10)  

where E(⋅) indicates conditional expectation and EFit denotes energy 
efficiency. 

To obtain determinants of energy efficiency, Battese and Coelli 
(1995) advocate for a first stage simultaneous estimation approach 
where explanatory variables are regressed on the inefficiency term vit 
conditional on the composite error term of the model. One advantage of 
this approach is that it accounts for possible sources of hetero-
skedasticity present in the stochastic component. The model is presented 
as: 

vit =Citβ + εit, vit > 0. (3.11)  

where Cit represents a vector of explanatory variables, β denotes a vector 
of parameters to be estimated and εit is an error term following a trun-
cated normal distribution with mean zero and variance δ2

εit 
truncated at 

-Citβ. A positive sign of the coefficient of an explanatory variable is 
interpreted to mean that the variable has a negative effect on energy 
efficiency and vice versa. 

3.1. Econometric specification 

The estimation of a stochastic frontier function using panel data can 
be done by various model specifications. These include the pooled model 
(PM), the random effects model (REM), the true fixed effects model 
(TFEM) and the true random effects model (TREM) (Filippini and Zhang, 
2016).1 Further, recent studies by Filippini and Hunt (2012, 2013) on 
the aggregate energy demand, part of the stochastic frontier models has 
been estimated by an adjustment proposed by Mundlak (1978). This 
adjustment allows for prospective unobserved heterogeneity bias and 
splits transient inefficiency from time-invariant unobserved heteroge-
neity. All these models have their relative strengths and weaknesses and 
the selection of a suitable model is not straightforward. It is dependent 
on the objective of the task, the type of data and the available variables 
(Filippini and Hunt, 2013). 

The PM is the SFA model in its initial form introduced by Aigner et al. 
(1977) and modified for panel data by Pitt and Lee (1981). This model 
does not take the advantage provided by panel data to allow for 

time-invariant unobserved heterogeneity. Thus, the model can suffer 
from unobserved heterogeneity bias. In contrast, the REM proposed by 
Pitt and Lee (1981) considers the standard panel data individual random 
effects as inefficiency instead of unobserved heterogeneity as is the case 
in conventional literature on panel data econometrics (Filippini and 
Hunt, 2013). 

To address this problem using panel data, Greene (2005a, 2005b) 
suggested TFEM and TREM through which the SFA model in its initial 
form is extended by including fixed and random individual effects 
respectively. In TFEM and TREM, the intercept is substituted with a 
series of firm-specific fixed or random effects that allow for 
time-invariant unobserved heterogeneity. The TFEM and the TREM can 
distinguish time-invariant unobserved heterogeneity from the 
time-varying level of efficiency component. Nonetheless, in these 
models, any time-invariant or persistent component of inefficiency is 
completely absorbed in the firm-specific constant terms (Filippini and 
Hunt, 2013). Thus, to the extent that there are specific sources of energy 
inefficiency that result in time-invariant excess energy consumption, the 
estimates of these models could provide relatively high and imprecise 
levels of energy efficiency (Filippini and Hunt, 2011). 

Finally, the PM, REM and TREM could all be affected by ‘unobserved 
heterogeneity bias’; for instance, a case where the correlation between 
observables and unobservables could bias some coefficients of the 
explanatory variables (Filippini and Hunt, 2013). To address this 
problem, Farsi et al. (2005a, 2005b) proposed the use of the Mundlak 
version of the REM. The Mundlak version is where the correlation of the 
firm-specific effects and the explanatory variables are considered in an 
auxiliary equation which is incorporated in the main equation and 
estimated using the REM (Filippini and Hunt, 2013). Given that corre-
lation between the individual specific effects and the explanatory vari-
ables is at least partially captured in the model, the heterogeneity bias is 
expected to be relatively low. 

This model would be appropriate for this study. However, despite the 
attractiveness of this model and other random and fixed effects models, 
the models failed to converge. The panel data suffers from a large 
number of firm entries and exits so that only a few firms are in the 
dataset for all the years included in the analysis. Consequently, 
following Filippini and Hunt (2011), the PM model fit by maximum 
likelihood estimation (MLE) is adopted in this study. 

3.2. Data and definition of variables 

The study uses data drawn from the World Bank Enterprise Surveys 
(WBES) for 2007, 2013 and 2018. The electricity model uses informa-
tion for the three years which contains 12652 observations. However, 
2018 does not have information on fuel spending and thus 810 obser-
vations for 2007 and 2013 are used in the estimation of the fuel and total 
energy models. The input distance function is estimated using output, 
capital, labor, materials, energy and time trend.3 Energy is measured as 
the total expenditure on electricity and fuel. Output is measured as total 
annual sales. Capital is measured as the net book value of machinery and 
other equipment. Labor is measured as total wages paid to permanent, 

1 For more detailed information on these models, see Farsi and Filippini 
(2009). 

2 Outliers are detected using squared Mahalabonis distance leaving 1265 
observations for the electricity model and 810 observations for the fuel model.  

3 Alternatively, time dummies can be used to capture technological change as 
suggested in Filippini and Hunt (2012). In a preliminary analysis, time 
dummies were also used in the present study and the results were relatively 
similar. 
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full-time employees.4 Materials are measured as the total cost of mate-
rials. Time trend variable is measured in years. 

Following Mandal and Madheswaran (2011), Lin and Long (2014), 
Roy and Yasar (2015) and Haider et al. (2019) the study adopts firm size, 
firm age, labor productivity, foreign ownership, exporting status and 
R&D status in analyzing determinants of energy efficiency. Moreover, 
top manager’s experience and female ownership status are also 
included. Firm size is measured as the number of employees in a firm. 
The effect of firm size on energy efficiency is expected to be ambiguous. 
Large firms could be more energy efficient than small firms. Unlike small 
firms, large firms have access to skilled management, enough financial 
resources to purchase energy-efficient technologies and a higher ability 
to optimize on economies of scale (Moon and Min, 2017). However, firm 
size could negatively influence energy efficiency. As firms grow larger, 
bottlenecks in management emerge, making them consume more energy 
(Mandal and Madheswaran, 2011). 

Firm age is measured as the number of years a firm has been in ex-
istence. The effect of firm age on energy efficiency is also expected to be 
ambiguous. A positive effect could be observed due to gains from 
learning-by-doing (Mandal and Madheswaran, 2011). On the other 
hand, a negative effect could arise because old firms are likely to use old 
technologies while young firms use more recent technologies (Haider 
et al., 2019). 

R&D is measured as a dummy variable, 1 if a firm engages in R&D 
and 0 if otherwise. This variable is expected to have a positive effect on 
energy efficiency. Engaging in R&D activities makes firms be innovative 
and learn about modern technologies (Lin and Shi, 2014). Top man-
ager’s level of experience is measured by the number of years a manager 
has worked. The effect of top manager’s level of experience on energy 
efficiency is expected to be positive. Experienced managers are expected 
to have acquired the skills and techniques necessary to promote energy 
efficiency (Lemi and Wright, 2018). 

Female firm ownership is measured as a dummy variable, 1 if a firm 
is female-owned and 0 if otherwise. This variable is expected to influ-
ence energy efficiency positively. According to ILO (2019), women 
inject teamwork, problem-solving skills, creativity and innovation and 
openness, which are key to promoting efficiency. Labor productivity is 
calculated as the ratio of output to wages.5 The variable is expected to 
have a positive effect on energy efficiency. According to Mandal and 
Madheswaran (2011), high labor productivity is associated with the 
application of energy-efficient technologies. 

Exporting status is measured as a dummy variable, 1 if a firm engages 
in exporting activities and 0 if otherwise. Exporting is expected to in-
fluence energy efficiency positively. As firms export, particularly to 
developed countries, they learn to enhance their technologies, and their 
employees get exposed to better management practices (Campi et al., 
2015). Bigsten and Soderbom (2006) refer to this as 
learning-by-exporting. In addition, some destination countries require 
exporting countries to meet certain environmental standards to access 
their markets (Roy and Yasar, 2015). 

Foreign ownership is measured as a dummy variable, 1 if a firm is 
foreign-owned and 0 if otherwise. The variable is expected to have a 
positive effect on energy efficiency. Foreign-owned firms have access to 
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4 Another measure of labour is the number of employees which should be 
corrected for a number of factors characterizing labour. Such factors include 
changes over time in employment level, degree of employment: either full or 
part-time, or, the average number of hours of work per employee, types of la-
bour and quality of human capital (Heshmati, 2003). However, some of these 
factors are not available in the data and wage bill was considered given that it 
accounts for these factors to some extent.  

5 Labour productivity is also calculated as the ratio of output to number of 
employees. However, given that the number of employees should be adjusted 
for some factors that are not available in the dataset, total wage bill is used in 
this study. 
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advanced technologies and expose their staff to special skills which help 
them use energy efficiently (Sahu and Narayanan, 2011). 

Descriptive statistics of the dataset are presented in Table 1. 

4. Empirical results 

4.1. Tests 

Table 2 presents log-likelihood results for tests of the production 
function, equality of parameters, technical change and efficiency effects. 
The likelihood statistics are compared with Kodde and Palm (1986) 
critical values at 5% level of significance. The null hypothesis for a 
Cobb-Douglas production function against a translog specification is 
rejected in all the sub-sectors, hence the translog specification is adop-
ted. The null hypothesis for equality of parameters through the four 
sub-sectors is rejected in all the models. Therefore, the parameters for 
each of the four subsectors are different and the sub-sector models 
cannot be pooled. The null hypothesis for no technical change is rejected 
in all the sub-sectors and models. This hypothesis test decision means 
that the production functions in the four sub-sectors shifted over time, 
implying that the macroeconomic environment could have a significant 
effect on electricity, fuel and total energy efficiency over the considered 
period. In all the sub-sectors and models, the null hypothesis for no 

inefficiency effects is rejected, suggesting the existence of technical 
inefficiencies. 

The models are also assessed for multicollinearity using variance 
inflation factor (VIF). When inputs used in the translog production 
function are highly correlated, SFA estimates become imprecise. 
Nevertheless, multicollinearity in these functions is minimized through 
centering variables around their sample means before computing their 
interaction terms. A VIF of 1 signals no collinearity between two re-
gressors, while a VIF greater than 10 indicates severe multicollinearity. 
Table 3 provides results for the multicollinearity test. 

The VIF estimates show minimal collinearity among regressors in all 
the sub-sectors with values ranging between 2.89 and 3.32 in the elec-
tricity model, 3.13 to 4.53 in the fuel model and 3.29 to 3.83 in the total 
energy model. The results also show minimal collinearity among de-
terminants of energy efficiency. The VIF estimates range from 2.78 to 
4.60 in the electricity model, 4.15 to 5.07 in the fuel and total energy 
models. The later models have common observations. 

4.2. Elasticities 

The maximum likelihood estimates of the parameters of the elec-
tricity, fuel and total energy stochastic frontier models are provided in 
Tables A.1, A.2 and A.3 in the appendix. The parameter estimates of 
output and all inputs have economically plausible signs in all the sub- 
sectors in the electricity model, except capital in the other 
manufacturing sub-sector. However, the coefficient of this variable is 
insignificant at 5% level of significance. In the fuel model, parameter 
estimates of output and all inputs have economically plausible signs, 
except materials in the food sub-sector. Another exception is capital in 
all the sub-sectors, apart from the other manufacturing sub-sector. 
Nevertheless, the variables with unexpected signs are statistically 
insignificant. In the total energy model, all parameter estimates of inputs 
and output have economically reasonable signs except materials in the 
other manufacturing sub-sector. But the coefficient on this variable is 
insignificant. The time trend coefficient is positive and significant in the 
chemicals, pharmaceuticals and plastics sub-sector in both the fuel and 
total energy models. 

Output elasticities have negative signs which is in line with the 
property that output decreases with input distance. The positive sign on 
input elasticities conforms with the non-decreasing in inputs property of 

Table 2 
Log likelihood test for the stochastic frontier production function.  

Null Hypothesis H0  Model χ2-statistics (electricity model)  χ2-statistics (fuel model)  χ2-statistics (Total energy model)  Critical Value 

Cobb-Douglas  
C, P and P 90.76***  97.91***  41.40***  24.384  

Food 70.32***  55.21***  81.12***  24.384  

T and G 78.20***  46.66***  104.07***  24.384  

Other manufacturing 79.17***  58.28***  117.40***  24.384 

Equality of parameters  
Overall sector model vs 63.43***  344.91***  305.07***  55.190  

Sub-sector based model     
No technical change  

C, P and P 43.51***  84.35***  22.03***  11.911  

Food 18.47***  57.83***  33.07***  11.911  

T and G 19.15***  25.80***  51.44***  11.911  

Other manufacturing 30.54***  45.41***  81.80***  11.911 

No efficiency effects  
C, P and P 60.23***  66.84**  25.22**  16.274  

Food 22.63***  75.51**  106.34**  16.274  

T and G 61.86***  60.07**  100.89**  16.274  

Other manufacturing 123.02***  44.31**  92.32**  16.274 

χ2 refers to the log-likelihood test statistic, *p < 0.1, **p < 0.05, ***p < 0.01. C, P and P is chemicals, pharmaceuticals and plastics and T and G is textiles and garments. 
Source: Author’s computation using data from WBES. 

Table 3 
Multicollinearity test results.  

Sub-sector Electricity 
model 

Fuel 
model 

Total energy 
model 

Translog production function 
Chemicals, pharmaceuticals and 

plastics 
2.89 4.53 3.83 

Food 3.17 3.13 3.57 
Textiles and garments 3.32 3.52 3.29 
Other manufacturing 2.99 3.33 3.31 
Determinants of energy efficiency 
Chemicals, pharmaceuticals and 

plastics 
3.96 5.07 5.07 

Food 4.60 4.55 4.55 
Textiles and garments 3.12 4.77 4.77 
Other manufacturing 2.78 4.15 4.15 

Source: Author’s computation using data from WBES. 

K.K. Macharia et al.                                                                                                                                                                                                                           



Energy Policy xxx (xxxx) xxx

7

input distance functions. Even though some variables have insignificant 
coefficients, the models are valid and can be applied in estimating ef-
ficiency for the reason that the null hypothesis (λ=0)6 for no stochastic 
inefficiencies is rejected at 5% level of significance. All the sub-sectors in 
the three models display increasing returns to scale, implying that an 
increase in output would less than proportionately lead to increased 
energy consumption. 

4.3. Electricity efficiency point estimates 

Table 4 provides summary statistics of electricity efficiency point 
estimates by sub-sectors. 

The mean efficiency scores vary across the sub-sectors, indicating 
varying capacities to enhance electricity efficiency. The mean electricity 
efficiency scores are 80.5, 64.8, 78.6 and 67.8% in the chemicals, 
pharmaceuticals and plastics, food, textiles and garments and the other 
manufacturing sub-sectors, respectively. They reveal that respective 
sub-sectors could produce the same level of output by reducing elec-
tricity consumption by 19.5, 35.2, 21.4 and 32.2%. Comparing results of 
this study with other studies, Lundgren et al. (2016) in the Swedish 
manufacturing sector, find average electricity efficiency in 12 
sub-sectors ranges from 70% in the stone/mineral sub-sector to 98.2% in 
the rubber and printing sub-sector. In the Swedish pulp and paper mills 
industry, Blomberg et al. (2012) find electricity efficiency in four sectors 
to vary from 81.3% in the Kraft and wellpaper sector to 97.7% in the 
printing paper sector. However, the energy efficiency scores in different 
countries are not openly comparable to those of this study because of 
differences in data samples, models and estimation methods. Efficiency 

scores are sensitive to estimation methods, assumptions made on the 
distribution of error terms and data samples (Ngui and Muniu, 2012). 

The maximum electricity efficiency scores are high and the minimum 
electricity efficiency scores are low but vary across sub-sectors. This 
signals the existence of very electricity-efficient and inefficient firms in 
each sub-sector. This corroborates the result of Lundgren et al. (2016) in 
the Swedish manufacturing sub-sectors. Kruskal-Wallis test of the null 
hypothesis that the mean electricity efficiency scores are equal in all the 
sub-sectors is 290.339 with 3 degrees of freedom and higher than the 
critical value of 7.815, resulting in rejection of the null hypothesis at 5% 
level of significance. Therefore, the average electricity efficiency scores 
are significantly different across the four sub-sectors. Nevertheless, 
direct comparison of the average scores across the sub-sectors in terms of 
whether one sub-sector is more electricity efficient than the other is less 
meaningful because efficiency scores are established on sub-sector spe-
cific benchmark frontier (O’Donell et al., 2008). 

4.3.1. Distribution of electricity efficiency by firm size 
Table 5 provides the distribution of sub-sector electricity efficiency 

levels by firm size. Firms are categorized into three sizes by the WBES 
classification. The categories are: small (5–19 employees), medium 
(20–99 employees) and large (over 100 employees). This analysis is 
important in revealing firms with the highest potential to meet elec-
tricity efficiency targets. 

Table 5 shows heterogeneity in electricity efficiency across firm sizes 
in each sub-sector. Kruskal-Wallis test statistics are greater than the 
critical value of 5.991 with 2 degrees of freedom in each sub-sector. This 
means that the null hypothesis that the mean electricity efficiency scores 
are equal across all firm sizes in each sub-sector is rejected at 5% level of 
significance. Thus, mean electricity efficiency is significantly different 
across the three firm sizes in each sub-sector. There is limited evidence 
of common patterns in electricity efficiency across firms of different 
sizes. It is difficult to tell whether small or large firms are the most 
electricity efficient. In the chemicals, pharmaceuticals and plastics sub- 
sector, electricity efficiency increases monotonically with reductions in 
firm size. In the food sub-sector, small and large firms are equally 
electricity efficient and perform better than medium firms. In the textiles 
and garments sub-sector, electricity efficiency increases monotonically 
with firm size. In the other manufacturing sub-sector, medium-sized 
firms are more electricity efficient than small and large firms while 
large-sized firms are more efficient than small firms. 

4.4. Fuel efficiency point estimates 

Table 6 provides summary statistics of fuel efficiency point estimates 
by sub-sectors. 

The mean fuel efficiency scores in the chemicals, pharmaceuticals 
and plastics, food, textile and garments and the other manufacturing 
sub-sectors are 73.9, 72.3, 71.5 and 68.8% respectively. These scores 
imply that respective sub-sectors can cut fuel consumption by 26.1, 
27.7, 20.5 and 31.2% without any change in output. Comparing the 
findings of this study with those of other studies, Lundgren et al. (2016) 

Table 4 
Summary statistics for electricity efficiency point estimates.  

Model Mean Standard 
Deviation 

Skewness Minimum Maximum 

Chemicals, 
Pharmaceuticals 
and plastics 

0.805 0.169 − 2.784 0.005 0.960 

Food 0.648 0.173 − 1.904 0.013 0.905 
Textiles and 

Garments 
0.786 0.191 − 1.966 0.010 0.982 

Other 
Manufacturing 

0.678 0.186 − 1.679 0.012 0.935 

Source: Author’s computation from WBES data. 

Table 5 
Mean electricity efficiency by size categories and sub-sector.  

Sub-sector Mean Minimum Maximum Kruskal-Wallis test Statistic 

Chemicals, pharmaceuticals and plastics 
Small 0.840 0.628 0.938  
Medium 0.817 0.180 0.960 7.349 
Large 0.763 0.005 0.935  
Food 
Small 0.651 0.013 0.893  
Medium 0.642 0.037 0.905 6.172 
Large 0.651 0.034 0.877  
Textiles and garments 
Small 0.744 0.020 0.979  
Medium 0.801 0.010 0.965 6.102 
Large 0.814 0.170 0.982  
Other manufacturing 
Small 0.665 0.014 0.923  
Medium 0.688 0.012 0.922 8.022 
Large 0.675 0.013 0.935  

Source: Author’s computation from WBES data. 

Table 6 
Summary statistics for fuel efficiency point estimates.  

Model Mean Standard 
Deviation 

Skewness Minimum Maximum 

Chemicals, 
Pharmaceuticals 
and plastics 

0.739 0.308 − 0.800 0.019 0.996 

Food 0.723 0.205 − 1.840 0.023 0.978 
Textiles and 

Garments 
0.715 0.200 − 1.698 0.004 0.955 

Other 
Manufacturing 

0.688 0.187 − 1.541 0.007 0.975 

Source: Author’s computation from WBES data. 

6 λ gives information on the proportion of the composite error term explained 
by the inefficiency term, vit .
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in 12 Swedish manufacturing sub-sectors find fuel efficiency ranges from 
63.4% in the food sub-sector to 94.3% in the fabricated metals 
sub-sector. Very high maximum and low minimum fuel efficiency values 
are found across sub-sectors, revealing the presence of very fuel-efficient 
and inefficient firms in each sub-sector. The result is in line with 
Lundgren et al. (2016) in Swedish manufacturing sub-sectors. Krus-
kal-Wallis test for the null hypothesis that mean fuel efficiency scores are 
equal in all sub-sectors is 77.466 and higher than the critical value of 
7.815 with 3 degrees of freedom which leads to rejection of the null 
hypothesis at 5% level of significance. This result implies that the 
average fuel efficiency levels are significantly different across the four 
sub-sectors. 

4.4.1. Distribution of fuel efficiency by firm size 
Table 7 provides the distribution of sub-sector fuel efficiency levels 

by firm size. 
Kruskal-Wallis test statistics are greater than the critical value of 

5.991 with 2 degrees of freedom in each sub-sector. This result implies 
that the null hypothesis that the mean fuel efficiency scores are equal in 
all firm sizes in each sub-sector is rejected at 5% level of significance. 
Consequently, mean fuel efficiency scores differ significantly across the 
three firm sizes in each sub-sector. There is limited evidence of common 
patterns in fuel efficiency across firm sizes. Thus, it is difficult to assert 
whether small or large firms are the most fuel-efficient. In the chemicals, 
pharmaceuticals and plastics sub-sector, fuel efficiency increases 
monotonically with reductions in firm size. In the food sub-sector, small 
firms are more fuel-efficient than medium and large firms. Medium and 
large firms in this sub-sector are equally fuel-efficient. In the textile and 
garments and other manufacturing sub-sectors, medium firms are more 
fuel-efficient than small and large firms. But large firms are more effi-
cient than small firms in both sub-sectors. 

4.5. Total energy efficiency point estimates 

Table 8 provides summary statistics of total energy efficiency point 
estimates by sub-sectors. 

The average total energy efficiency scores in chemicals, pharma-
ceuticals and plastics is 62.5%, 64.7% in food and 69.0% in textile and 
garments and other manufacturing sub-sectors. The scores indicate a 
potential reduction in energy consumption by 37.5, 35.3, 31.0 and 
31.0% in the respective sub-sectors without affecting output. Comparing 
this finding with those of other studies, Lin and Long (2015) find the 
average energy efficiency in China’s chemical industry to be 68.97%. In 
China’s iron and steel industry, Lin and Wang (2014) find average en-
ergy efficiency to be 69.90%. The study finds very high maximum and 
low minimum energy efficiency scores across firms indicating the 
coexistence of very energy-efficient and energy-inefficient firms. 
Kruskal-Wallis test for the null hypothesis that total energy efficiency is 
equal in all sub-sectors is rejected at 5% level of significance. The test 
statistic is 9.263 with 3 degrees of freedom and is larger than the critical 
value of 7.815. This result means that the mean total energy efficiency 
scores are significantly different across all the sub-sectors. 

4.5.1. Distribution of total energy efficiency by firm size 
Table 9 provides the distribution of sub-sector total energy efficiency 

levels by firm size. 
Results in Table 9 show that Kruskal-Wallis test statistics are greater 

than the critical value of 5.991 with 2 degrees of freedom in each sub- 
sector. This result means that the null hypothesis that the mean total 
energy efficiency scores are equal in all firm sizes in each sub-sector is 
rejected at 5% level of significance. Hence, the mean total energy effi-
ciency is significantly different across the three firm sizes in each sub- 
sector. There is a common pattern in total energy efficiency across 
firm sizes in the chemicals, pharmaceuticals and plastics and food sub- 
sectors but limited evidence in other sub-sectors. Total energy effi-
ciency appears to decrease monotonically with firm size in the chem-
icals, pharmaceuticals and plastics sub-sector but increases 
monotonically with firm size in the food sub-sector. In the textiles and 
garments and other manufacturing sub-sectors, medium-sized firms are 
most energy-efficient, followed by large firms. Small firms are the least 
energy efficient. 

4.6. Determinants of energy efficiency 

The results on determinants of energy efficiency are provided in 
Tables A.1, A.2 and A.3. Labor productivity negatively influences elec-
tricity, fuel and total energy efficiency in all the sub-sectors, except for 
the food sub-sector in the electricity model. The finding is contrary to 

Table 7 
Mean fuel efficiency by size categories and sub-sector.  

Sub-sector Mean Minimum Maximum Kruskal-Wallis test Statistic 

Chemicals, pharmaceuticals and plastics 
Small 0.770 0.285 0.996  
Medium 0.763 0.086 0.995 7.072 
Large 0.682 0.019 0.992  
Food 
Small 0.743 0.026 0.978  
Medium 0.712 0.038 0.973 8.330 
Large 0.712 0.023 0.953  
Textiles and garments 
Small 0.680 0.011 0.939  
Medium 0.742 0.004 0.955 8.741 
Large 0.725 0.252 0.936  
Other manufacturing 
Small 0.664 0.094 0.933  
Medium 0.702 0.709 0.935 8.171 
Large 0.690 0.007 0.976  

Source: Author’s computation from WBES data. 

Table 8 
Summary statistics for total energy efficiency point estimates.  

Model Mean Standard 
Deviation 

Skewness Minimum Maximum 

Chemicals, 
Pharmaceuticals 
and plastics 

0.625 0.223 − 0.542 0.063 0.967 

Food 0.647 0.224 − 1.453 0.054 0.943 
Textiles and 

Garments 
0.690 0.225 − 1.074 0.050 0.995 

Other 
Manufacturing 

0.690 0.201 − 1.571 0.056 0.962 

Source: Author’s computation from WBES data. 

Table 9 
Mean total energy efficiency by size categories and sub-sector.  

Sub-sector Mean Minimum Maximum Kruskal-Wallis test Statistic 

Chemicals, pharmaceuticals and plastics 
Small 0.816 0.657 0.967  
Medium 0.630 0.217 0.921 8.206 
Large 0.549 0.063 0.867  
Food 
Small 0.640 0.057 0.920  
Medium 0.646 0.064 0.943 7.658 
Large 0.655 0.054 0.930  
Textile and garments 
Small 0.630 0.068 0.955  
Medium 0.744 0.050 0.995 10.32 
Large 0.697 0.152 0.963  
Other manufacturing 
Small 0.645 0.056 0.940  
Medium 0.707 0.089 0.962 8.898 
Large 0.704 0.067 0.912  

Source: Author’s computation from WBES data. 
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the study’s expectations. It appears that measures to improve labor 
productivity do not give additional emphasis to ensure a considerable 
level of skill advancement required to improving energy efficiency. This 
contradicts the outcome of Lin et al. (2011) and Mandal and Madhes-
waran (2011). 

The effect of firm age on energy efficiency is ambiguous. Firm age 
negatively influences electricity efficiency in the food sub-sector, fuel 
efficiency in the chemicals, pharmaceuticals and plastics sub-sector and 
total energy efficiency in the chemicals, pharmaceuticals and plastics 
and textiles and garments sub-sectors. The result indicates that young 
firms are more efficient than older firms. Probably, young firms use 
recent technologies while older firms use old technologies due to the 
huge sunk costs. This finding contrasts Jovanovic (1982) theory but, 
supports Haider et al. (2019). Firm age positively influences electricity 
efficiency in the chemicals, pharmaceuticals and plastics and textiles 
and garments sub-sectors. The implication of this is that older firms are 
more electricity efficient than young firms. Older firms could be capi-
talizing on their long experience in production to put in place electricity 
efficiency measures. This finding supports Jovanovic (1982) theory and 
Mandal and Madheswaran (2011). 

Firm age squared is included in the models to capture the non-linear 
relationship between firm age and energy efficiency. The variable has a 
negative and significant coefficient in the food and textile and garments 
sub-sectors in the electricity model. In the fuel model, it has a negative 
and significant coefficient in the other manufacturing sub-sector while 
in the total energy model, the negative and significant coefficient is in 
the chemicals, pharmaceuticals and plastics and textiles and garments 
sub-sectors. Therefore, as firms grow older, they become more efficient. 
Firm age and electricity efficiency in the food sub-sector and firm age 
and total energy efficiency in the chemicals, pharmaceuticals and plas-
tics and textiles and garments sub-sectors have an inverted U relation-
ship. The coefficient of firm age squared is positive in the textile and 
garments sub-sector, implying that advancement in age is accompanied 
by a decline in fuel efficiency. 

The study finds a positive and significant effect of top manager’s 
experience on electricity efficiency in the food and the other 
manufacturing sub-sectors. The variable also has a positive effect on 
total energy efficiency in the textiles and garments sub-sector. Elec-
tricity and total energy efficiency in these sub-sectors increase with top 
manager’s level of experience. Experienced managers are likely to 
transform processes using skills and abilities accumulated over time. 
This finding supports Lemi and Wright (2018). 

The effect of firm size on energy efficiency is ambiguous. Its positive 
and significant effect on electricity efficiency in the other manufacturing 
sub-sector and fuel efficiency in the textiles and garments sub-sector 
implies that large firms are more electricity and fuel-efficient than 
small firms in respective sub-sectors. Large firms have a highly skilled 
workforce, enough resources to purchase efficient technologies, high 
specialization and a higher chance of capitalizing on economies of scale. 
This finding supports Jovanovic (1982) theory and Li and Shi (2014). 
The negative and significant effect of firm size on electricity efficiency in 
the food and chemicals, pharmaceuticals and plastics sub-sectors implies 
that small firms are more electricity efficient than large firms. This 
particular finding could be explained by complexities that arise in large 
firms that result in more electricity consumption. 

Female ownership has a positive and significant effect on electricity 
efficiency in the food sub-sector, fuel efficiency in the chemicals, phar-
maceuticals and plastics and food sub-sectors, and total energy effi-
ciency in the chemicals, pharmaceuticals and plastics sub-sector. This 
finding implies that female-owned firms are likely to be more electricity, 
fuel and total energy efficient in respective sub-sectors. Women could be 
better in coordination and in skills that solve operational challenges, 
besides their ingenuity, novelty and openness (ILO, 2019). 

The positive and significant effect of foreign ownership on fuel effi-
ciency in the chemicals, pharmaceuticals and plastics sub-sector implies 
that foreign-owned firms are more fuel-efficient than domestically- 

owned firms. Foreign-owned firms could have access to technical 
assistance and technical know-how from abroad. This finding supports 
Sahu and Narayanan (2011). 

Exporting status has a positive and significant effect on electricity 
efficiency in all the sub-sectors except the other manufacturing sub- 
sector. The effect is also felt on fuel efficiency in the chemicals, phar-
maceuticals and plastics and the other manufacturing sub-sectors and 
total energy efficiency in the chemicals, pharmaceuticals and plastics 
sub-sector. This implies that in the respective sub-sectors, exporting 
firms are more electricity, fuel and total energy-efficient than non- 
exporting firms. This finding supports Campi et al. (2015). Through 
learning by exporting, firms enhance efficiency. Further, some buyers 
believe in environmentally friendly goods, which makes exporting firms 
adhere to environmental quality standards (Roy and Yasar, 2015). 

R&D has a negative and significant coefficient in the chemicals, 
pharmaceuticals and plastics sub-sector in both electricity and total 
energy models. The same is observed in the chemicals, pharmaceuticals 
and plastics and the other manufacturing sub-sectors in the fuel model. 
This implies that firms with R&D investments are more electricity and 
fuel-efficient. R&D activities expose firms to innovations in modern 
technologies that improve energy efficiency. This finding supports Lutz 
et al. (2017). 

5. Conclusion and policy implications 

This study employs SFA under a pooled model to analyze energy 
efficiency and its determinants in Kenya’s manufacturing sector. More 
precisely, the input distance function is used to model energy efficiency 
with the assumption of a translog production function. The results show 
considerable potential to improve electricity, fuel and total energy 
efficiency. 

There is no general pattern of drivers of energy efficiency across sub- 
sectors. Labor productivity is found to negatively influence electricity, 
fuel and total energy efficiency in nearly all the sub-sectors. The effect of 
firm age on energy efficiency is ambiguous. It influences electricity ef-
ficiency positively in the chemicals, pharmaceuticals and plastics and 
textiles and garments sub-sectors. But it has a negative effect on elec-
tricity efficiency in the food sub-sector and fuel efficiency in the 
chemicals, pharmaceuticals and plastics sub-sector. It also has a negative 
effect on total energy efficiency in the chemicals, pharmaceuticals and 
plastics and textiles and garments sub-sectors. 

The effect of firm size on energy efficiency is ambiguous. It in-
fluences electricity efficiency positively in the other manufacturing sub- 
sector and fuel efficiency in the textile and garments sub-sector. On the 
other hand, it influences electricity efficiency negatively in the chem-
icals, pharmaceuticals and plastics and food sub-sectors. The effect of 
top manager’s experience on electricity efficiency is positive in the other 
manufacturing and food sub-sectors. It has the same effect on total en-
ergy efficiency in the textiles and garments sub-sector. Female firm 
ownership promotes electricity efficiency in the food sub-sector and fuel 
and total energy efficiency in the chemicals, pharmaceuticals and plas-
tics sub-sector. 

Foreign ownership positively influences fuel efficiency in the 
chemicals, pharmaceuticals and plastics sub-sector. Exporting in-
fluences electricity efficiency positively in all the sub-sectors except the 
other manufacturing sub-sector. It also influences fuel efficiency posi-
tively in the chemicals, pharmaceuticals and plastics and the other 
manufacturing sub-sectors. The same influence is observed on total 
energy efficiency in the chemicals, pharmaceuticals and plastics sub- 
sector. R&D positively influences electricity and total energy effi-
ciency in the chemicals, pharmaceuticals and plastics sub-sector. It has 
the same effect on fuel efficiency in the chemicals, pharmaceuticals and 
plastics and the other manufacturing sub-sectors. 

Kenya requires policies to stimulate energy efficiency in the 
manufacturing sector. Given the heterogeneity in drivers of efficiency 
across sub-sectors and energy forms, the policies should be sub-sector 
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and energy-specific. The policy proposals can be summarized as follows: 

1. Strengthen technological innovation. The adoption of new technol-
ogies is the basis of energy efficiency. The government needs to in-
crease R&D funds to enable the discovery of modern technologies 
and the development of new equipment. Available data shows that in 
2018, R&D funding stood at only 0.48% of GDP. The funding was 
below the 2% recommended in the National Research Fund (NRF) 
Science, Technology and Innovation Act 2013. Further, the govern-
ment may foster R&D subsidies. It could provide low-interest loans 
or tax incentives to firms that invest in R&D. 

In the context of industrial structure, there is need to substitute old 
technologies with new technologies. Given that the high sunk costs 
could be the main barrier to technological change, there is need to 
provide financial incentives such as low-interest loans, tax exemptions 
and subsidies.  

2. Promote exports. Exporting promotes electricity efficiency in all sub- 
sectors apart from the other manufacturing sub-sector, fuel efficiency 
in the chemicals, pharmaceuticals and plastics and the other 
manufacturing sub-sectors and total energy efficiency in the chem-
icals, pharmaceuticals and plastics sub-sector. There is need for the 
government to promote exports beyond the creation of export pro-
cessing zones. Sourcing foreign markets is particularly important in 
this regard.  

3. Promote the growth of firms in the manufacturing sector. Firm size 
positively influences electricity efficiency in the chemicals, phar-
maceuticals and plastics sub-sector and fuel efficiency in the textiles 
and garments sub-sector. There is need for the government to pro-
vide a favorable business environment to enable firm growth.  

4. Promote female ownership in firms. Female ownership positively 
influences electricity efficiency in the food sub-sector, fuel efficiency 
in the chemicals, pharmaceuticals and plastics and food sub-sectors, 
and total energy in the chemicals, pharmaceuticals and plastics sub- 
sector. The government needs to devise policies that increase the 
visibility of female entrepreneurs in these sub-sectors.  

5. Other policies. Promotion of foreign ownership, particularly in the 
chemicals, pharmaceuticals and plastics sub-sector where this vari-
able influences fuel efficiency. Through foreign ownership, there will 
be spillover effects to local firms. The government also needs to in-
crease awareness of energy efficiency in firms. For instance, if pro-
ducers learn the benefits of energy efficiency measures, such 
measures may be scaled up. 

CRediT authorship contribution statement 

Kenneth Kigundu Macharia: Conceptualization, Visualization, 
Methodology, Software, Data curation, Investigation, Writing – original 
draft, and final report. John Kamau Gathiaka: Supervision, Writing – 
review & editing. Dianah Ngui: Supervision, Writing – review & 
editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

We welcome the valuable comments and ideas from discussants and 
resource personnel during AERC’S Biannual Workshops held in Cape 
Town and Nairobi in June and December 2019 respectively. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.enpol.2021.112715. 

Funding 

This research was supported by African Economic Research Con-
sortium (AERC). 

Grant ID: PT14UON2019. 

References 

Aigner, D., Lovell, C.A.K., Schmidt, P., 1977. Formulation and estimation of stochastic 
frontier production function models. J. Econom. 6 (1), 21–37. 

Al-Refaie, A., Hammad, M., Li, M.H., 2016. DEA window analysis and Malmquist index 
to assess energy efficiency and productivity in Jordanian industrial sector. Energy 
Effic. 9 (6), 1299–1313. 

Battese, G.E., Coelli, T.J., 1995. A model for technical inefficiency effects in a stochastic 
frontier production function for panel data. Empir. Econ. 20 (2), 325–332. 

Bigsten, A., Soderbom, M., 2006. What have we learned from a decade of manufacturing 
enterprise surveys in Africa? World Bank Res. Obs. 21 (2), 241–265. 

Blomberg, J., Henriksson, E., Lundmark, R., 2012. Energy efficiency and policy in 
Swedish pulp and paper mills: a data envelopment analysis approach. Energy Pol. 
42, 569–579. 

Boyd, G.A., 2008. Estimating plant-level energy efficiency with a stochastic frontier. 
Energy J. 29 (2), 23–43. 

Boyd, G., Lee, J.M., 2019. Measuring plant-level energy efficiency and technical change 
in the U.S. metal-based durable manufacturing sector using stochastic frontier 
analysis. Energy Econ. 81, 159–174. 

Campi, M.T.C., Quevedo, J.G., Segarra, 2015. Energy efficiency determinants: an 
empirical analysis of Spanish innovative firms. Energy Pol. 83, 229–239. 

Chirwa, E.W., 2001. Privatization and technical efficiency: evidence from the 
manufacturing sector in Malawi. Afr. Dev. Rev. 13 (2), 276–307. 

Coelli, T.J., 2000. On the Econometric Estimation of the Distance Function 
Representation of a Production Technology. Center for Operations Research and 
Econometrics, Universite Catholique de Louvain Discussion paper, 2000/42.  

Dalla Longa, F., van der Zwaan, B., 2017. Do Kenya’s climate change mitigation 
ambitions necessitate large-scale renewable energy deployment and dedicated low- 
carbon energy policy? Renew. Energy 113, 1559–1568. 

Debreu, G., 1951. The coefficient of resource utilization. Econometrica 19 (3), 273–292. 
Farrell, M.J., 1957. The measurement of productive efficiency. J. Roy. Stat. Soc. 120 (3), 

253–281. 
Farsi, M., Filippini, M., 2009. Efficiency measurement in the electricity and gas 

distribution sectors. In: Evans, J., Hunt, L.C. (Eds.), International handbook on the 
economics of energy. Edward Elgar, Cheltenham, pp. 598–623. 

Farsi, M., Filippini, M., Greene, W., 2005a. Efficiency measurement in network 
industries: application to the Swiss railway companies. J. Regul. Econ. 28 (1), 69–90. 

Farsi, M., Filippini, M., Kuenzle, M., 2005b. Unobserved heterogeneity in stochastic 
frontier models: an application to Swiss nursing homes. Appl. Econ. 37 (18), 
2127–2141. 

Filippini, M., Hunt, L., 2011. Energy demand and energy efficiency in the OECD 
countries: a stochastic demand frontier approach. Energy J. 32 (2), 59–80. 

Filippini, M., Hunt, L., 2012. US residential energy demand and energy efficiency: a 
stochastic demand frontier approach. Energy Econ. 34, 1484–1491. 

Filippini, M., Hunt, L., 2013. Underlying energy efficiency in the US. CER-ETH 
Economics Working Paper Series 13, p. 181. 

Filippini, M., Zhang, L., 2016. Estimation of the energy efficiency in Chinese provinces. 
Energy Effic. 9 (6), 1315–1328. 

Green, W., 2005a. Reconsidering heterogeneity in panel data estimators of the stochastic 
frontier model. J. Econ. 126 (2), 269–303. 

Green, W., 2005b. Fixed and random effects in stochastic frontier models. J. Prod. Anal. 
23 (1), 7–32. 

Haider, S., Danish, M.S., Sharma, R., 2019. Assessing energy efficiency of Indian paper 
industry and influencing factors: a slack-based firm-level analysis. Energy Econ. 81, 
454–464. 

Heshmati, A., 2003. Productivity growth, efficiency and outsourcing in manufacturing 
and services industries. J. Econ. Surv. 17 (1), 79–112. 

International Energy Agency (IEA), 2014. World Energy Outlook 2018. IEA, Paris.  
International Labour Organization (ILO), 2019. Women in Business and Management: 

the Business Case for Change. Geneva, Italy.  
Jovanovic, B., 1982. Selection and the Evolution of the Industry. Econometrica. Journal 

of the Econometric Society, pp. 649–670. 
Kodde, D.A., Palm, F.C., 1986. Wald criteria for jointly testing equality and inequality 

restrictions. Econometrica 54 (5), 1243–1248. 
Kumbhakar, S., Lovell, C.A.K., 2000. Stochastic Frontier Analysis. Cambridge University 

Press, United Kingdom.  
Kumbhakar, S.C., Wang, H.J., Horncastle, A.P., 2015. A Practitioner’s Guide to 

Stochastic Frontier Analysis Using Stata. Cambridge University Press, United 
Kingdom.  

K.K. Macharia et al.                                                                                                                                                                                                                           

https://doi.org/10.1016/j.enpol.2021.112715
https://doi.org/10.1016/j.enpol.2021.112715
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref1
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref1
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref2
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref2
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref2
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref3
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref3
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref4
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref4
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref5
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref5
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref5
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref6
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref6
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref7
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref7
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref7
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref8
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref8
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref10
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref10
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref11
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref11
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref11
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref12
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref12
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref12
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref13
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref14
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref14
http://refhub.elsevier.com/S0301-4215(21)00580-2/opt8BlUplhatZ
http://refhub.elsevier.com/S0301-4215(21)00580-2/opt8BlUplhatZ
http://refhub.elsevier.com/S0301-4215(21)00580-2/opt8BlUplhatZ
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref15
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref15
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref16
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref16
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref16
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref17
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref17
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref18
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref18
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref19
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref19
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref20
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref20
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref21
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref21
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref22
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref22
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref23
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref23
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref23
http://refhub.elsevier.com/S0301-4215(21)00580-2/optrjHZko72fg
http://refhub.elsevier.com/S0301-4215(21)00580-2/optrjHZko72fg
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref24
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref25
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref25
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref26
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref26
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref27
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref27
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref28
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref28
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref29
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref29
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref29


Energy Policy xxx (xxxx) xxx

11

Lemi, A., Wright, I., 2018. Exports, foreign ownership, and firm-level efficiency in 
Ethiopia and Kenya: an application of the stochastic frontier model. Empir. Econ. 58 
(2), 669–698. 

Li, H., Shi, J., 2014. Energy efficiency analysis on Chinese industrial sectors: an improved 
Super- SBM model with undesirable outputs. J. Clean. Prod. 65, 97–107. 

Lin, B., Long, H., 2015. A stochastic frontier analysis of energy efficiency of China’s 
chemical industry. J. Clean. Prod. 87, 235–244. 

Lin, B., Wang, X., 2014. Exploring energy efficiency in China’s iron and steel industry: a 
stochastic frontier approach. Energy Pol. 72, 87–96. 

Lin, B., Wu, Y., Zhang, L., 2011. Estimates of the potential for energy conservation in the 
Chinese steel industry. Energy Pol. 39 (6), 3680–3689. 

Lundgren, T., Marklund, P., Zhang, S., 2016. Industrial energy demand and energy 
efficiency -Evidence from Sweden. Resour. Energy Econ. 43, 130–152. 

Lutz, B.J., Massier, P., Sommerfeld, K., Loschel, A., 2017. Drivers of Energy Efficiency in 
German Manufacturing: A Firm Level Stochastic Frontier Analysis. ZEW-Centre for 
European Economic Research Discussion Paper, pp. 17–68. 

Mandal, S.K., Madheswaran, S., 2011. Energy use efficiency of Indian cement companies: 
a data envelopment analysis. Energy Effic. 4 (1), 57–73. 

Montalbano, P., Nenci, S., 2019. Energy efficiency, productivity and exporting: firm-level 
evidence in Latin America. Energy Econ. 79–110. 

Mukherjee, K., 2008a. Energy use efficiency in US manufacturing: a nonparametric 
analysis. Energy Econ. 30 (1), 76–96. 

Mukherjee, K., 2008b. Energy use efficiency in the Indian manufacturing sector: an 
interstate analysis. Energy Pol. 36 (2), 662–672. 

Mundlak, Y., 1978. On the pooling of time series and cross section data. Econometrica 64 
(1), 69–85. 

Moon, H., Min, D., 2017. Assessing energy efficiency and related policy implications for 
energy-intensive firms in Korea: DEA approach. Energy 133, 23–34. 

Ndichu, J., Blohmke, J., Kemp, R., Adeoti, J., Elijah, A., 2015. The adoption of energy 
efficiency measures by firms in Africa: case studies of cassava processing in Nigeria 
and maize milling in Kenya. Innov. Dev. 5 (2), 189–206. 

Ngui, D.M., Muniu, J.M., 2012. Firm efficiency differences and distribution in the Kenyan 
manufacturing sector. Afr. Dev. Rev. 24 (1), 52–66. 

O’Donnell, C.J., Rao, D.S.P., Battese, G.E., 2008. Metafrontier frameworks for the study 
of firm-level efficiencies and technology ratios. Empir. Econ. 34 (2), 231–255. 

Pitt, M., Lee, L., 1981. The measurement and sources of technical inefficiency in the 
Indonesian weaving industry. Journal of Development. Economics 9 (1), 43–64. 

Republic of Kenya, 2013. Economic Survey. Government printer, Nairobi.  
Republic of Kenya, 2014. Economic Survey. Government printer, Nairobi.  
Republic of Kenya, 2018. Economic Survey. Government printer, Nairobi.  
Republic of Kenya, 2020a. Economic Survey. Government printer, Nairobi.  
Republic of Kenya, 2020b. Kenya National Energy Efficiency and Conservation Strategy. 

Government printer, Nairobi.  
Roy, J., Yasar, M., 2015. Energy efficiency and exporting: evidence from firm-level data. 

Energy Econ. 52, 127–135. 
Sahu, S.K., Narayanan, K., 2011. Determinants of energy intensity in Indian 

manufacturing industries: a firm level analysis. Euras. J. Bus. Econ. 4 (8), 13–30. 
Shephard, R.W., 1970. Theory of Cost and Production Functions. Princeton University 

Press, Princeton.  
Zhang, X.-P., Cheng, X.-M., Yuan, J.-H., Gao, X.-J., 2011. Total - factor energy efficiency 

in developing countries. Energy Pol. 39 (2), 644–650. 

K.K. Macharia et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S0301-4215(21)00580-2/sref30
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref30
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref30
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref31
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref31
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref32
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref32
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref33
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref33
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref34
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref34
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref35
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref35
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref36
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref36
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref36
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref37
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref37
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref38
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref38
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref39
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref39
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref40
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref40
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref41
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref41
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref42
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref42
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref43
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref43
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref43
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref44
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref44
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref45
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref45
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref46
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref46
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref47
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref48
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref49
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref50
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref51
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref51
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref52
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref52
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref53
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref53
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref54
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref54
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref55
http://refhub.elsevier.com/S0301-4215(21)00580-2/sref55

	Energy efficiency in the Kenyan manufacturing sector
	1 Introduction
	2 Literature review
	3 Empirical model
	3.1 Econometric specification
	3.2 Data and definition of variables

	4 Empirical results
	4.1 Tests
	4.2 Elasticities
	4.3 Electricity efficiency point estimates
	4.3.1 Distribution of electricity efficiency by firm size

	4.4 Fuel efficiency point estimates
	4.4.1 Distribution of fuel efficiency by firm size

	4.5 Total energy efficiency point estimates
	4.5.1 Distribution of total energy efficiency by firm size

	4.6 Determinants of energy efficiency

	5 Conclusion and policy implications
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	Funding
	References


